-
袁霆主任醫(yī)師 上海市第六人民醫(yī)院 骨科-骨腫瘤科 骨巨細胞瘤是一種中間型骨腫瘤,具有局部侵襲性、偶爾遠處轉(zhuǎn)移、復發(fā)率較高等一些惡性腫瘤的特點。約占原發(fā)骨腫瘤的5%,患者年齡大多在16-40歲間。主要臨床表現(xiàn)大多為在長骨的骨骺端疼痛——酸痛或鈍痛,或偶有劇痛。部分患者有局部腫脹,可能與骨性膨脹有關。病變穿破骨皮質(zhì)侵入軟組織時,局部包塊明顯,且有活動受限。 CT可以提供多層面的圖像并且重建出三維圖像,能精準地評估腫瘤周圍骨質(zhì)破壞程度。 我們團隊的研究發(fā)現(xiàn),骨巨細胞瘤CT圖像中腫瘤到關節(jié)面距離和腫瘤周圍未受侵犯皮質(zhì)厚度是影響腫瘤復發(fā)的顯著性危險因素。還有研究通過選擇骨巨細胞瘤CT圖像上的某些特征,建立了一個脊柱骨巨細胞瘤影像組學的預測模型,且預測腫瘤復發(fā)的準確率較高。因此,CT檢查在骨巨細胞瘤的預后和治療評估中都有非常重要的作用。2022年12月27日
689
0
4
-
胡金艮副主任醫(yī)師 浙江大學醫(yī)學院附屬第一醫(yī)院 骨科 骨巨細胞瘤Authors:David M Thomas, FRACP, PhDJayesh Desai, MD, FRACPSection Editors:Thomas F DeLaney, MDRaphael E Pollock, MDDeputy Editor:Diane MF Savarese, MD翻譯:沈宇輝, 副主任醫(yī)師Contributor Disclosures我們的所有專題都會依據(jù)新發(fā)表的證據(jù)和同行評議過程而更新。文獻評審有效期至:2020-09.|專題最后更新日期:2020-02-26.There is a newer version of this topic available inEnglish.該主題有一個新的英文版本。引言 骨巨細胞瘤(giant cell tumor of bone, GCTB)是一種交界性骨腫瘤,有局部侵襲性、溶骨性表現(xiàn),好發(fā)于年輕人,發(fā)病率較低。GCTB于1818年被首次發(fā)現(xiàn)[1],直到1940年才與其他骨腫瘤(如動脈瘤樣骨囊腫、軟骨母細胞瘤和非骨化性纖維瘤)正式區(qū)分[2]。(參見“兒童及青少年良性骨腫瘤”)雖然GCTB視作良性腫瘤,但其體現(xiàn)了腫瘤形成的一個連續(xù)過程,無法根據(jù)臨床、影像學及組織學特征預測其臨床行為。GCTB可局部侵襲,單純刮除術后有局部復發(fā)的傾向。此外,2%-3%的病例會發(fā)生遠處轉(zhuǎn)移,多轉(zhuǎn)移至肺。但GCTB肺轉(zhuǎn)移的意義與惡性腫瘤轉(zhuǎn)移瘤(如肺癌或肉瘤)的意義不同,大部分患者中,其臨床行為屬于良性,轉(zhuǎn)移病變不會導致患者死亡,故稱為“良性肺種植”。少數(shù)GCTB會發(fā)生真正的惡性轉(zhuǎn)化。本專題將討論GCTB的流行病學、臨床及影像學特征、分期、病理學和分子學發(fā)病機制,以及治療方法。流行病學在美國,GCTB占所有原發(fā)性骨腫瘤的3%-5%,占所有良性骨腫瘤的15%-20%[3,4]。來自瑞典癌癥登記處的一項人群病例系列研究顯示發(fā)病率略微更高,在53年期間確診的4625例骨腫瘤中,505例(11%)為GCTB[5]。該病在亞洲人群中的發(fā)病率顯著高于西方人群。在中國,GCTB約占所有原發(fā)性骨腫瘤的20%[6,7]。不過這些腫瘤通常罕見。瑞典一項人群注冊病例系列研究表明,年發(fā)病率為1.3/100萬[8]。GCTB一般發(fā)生于骨發(fā)育成熟后,發(fā)病高峰期為20多歲和30多歲,女性略多[3,9-11]。20歲之前發(fā)病者罕見。與骨成熟后發(fā)病者相比,在骨骺閉合之前即出現(xiàn)GCTB的患者,其椎骨原發(fā)性腫瘤及多中心性病變的發(fā)生率往往更高[12,13],但并非所有病例系列研究都得到這種結(jié)果[14]。一種相關疾病,即中心性巨細胞肉芽腫(central giant cell granuloma, CGCG),是含有多核巨細胞的頜骨破壞性骨病,主要見于兒童和青少年[15]。危險因素通常不詳。但骨Paget病患者中GCTB的發(fā)病率增高。病變通常發(fā)生于長期存在多骨性病變患者的顱骨或骨盆,也可見于非骨性組織(骨外破骨細胞瘤)。有Paget病合并GCTB的家族聚集性病例報道[16,17]。(參見“Paget骨病的臨床表現(xiàn)與診斷”)需注意,罕見的先天性散發(fā)性Noonan綜合征患者易發(fā)巨細胞瘤,尤其是頜骨[18-21]。(參見“身材矮小的原因”,關于‘Noonan綜合征’一節(jié))臨床表現(xiàn)和影像學GCTB最常見的表現(xiàn)為原發(fā)部位疼痛、腫脹及關節(jié)活動受限。最常累及長骨骨骺(圖 1),全部病例約一半有股骨遠端或脛骨近端受累。不常受累部位包括:椎體、骨盆、骶骨、顱骨和顱面骨,以及手足的小骨骼。腫瘤位于中軸骨的患者可能出現(xiàn)神經(jīng)系統(tǒng)癥狀和體征。在10%-35%的患者中,承重部位的骨皮質(zhì)變薄會導致病理性骨折[22-25]。關節(jié)面可能會受累。大多數(shù)GCTB病例為孤立性病灶,在報道的所有病例中,多中心性GCTB占比<1%[12]。如上所述,與孤立性GCTB患者相比,多中心性病變患者傾向于更年輕。(參見上文‘流行病學’)極少數(shù)患者可能出現(xiàn)轉(zhuǎn)移性病變,多見于肺[26]。但肺轉(zhuǎn)移一般更常出現(xiàn)在局部復發(fā)后。(參見下文‘自然病程’)影像學診斷性檢查—所有患者均需接受原發(fā)部位影像學檢查,包括X線平片和橫斷面成像(增強CT聯(lián)合或不聯(lián)合增強MRI)。美國國家綜合癌癥網(wǎng)絡[National Comprehensive Cancer Network (NCCN)]的指南推薦用胸部CT評估有無肺轉(zhuǎn)移。但鑒于轉(zhuǎn)移性擴散最常見于初始外科干預后,診斷時可以只檢查普通胸片,而胸部CT僅用于局部復發(fā)的患者。放射性核素骨掃描可能有助于多中心疾病分期,但對骨掃描適應證尚未達成明確共識。用于確定病變范圍的現(xiàn)代影像學技術融合了解剖學(X線、CT、MRI)與功能學(骨掃描、PET)掃描。在X線平片上,GCTB通常表現(xiàn)為膨脹的偏心性溶骨區(qū),是腫瘤內(nèi)出血所致。病變通常累及骨骺及相鄰的干骺端(圖 2),且常延伸至軟骨下板,有時累及關節(jié)。通常無基質(zhì)鈣化及反應性骨膜新生骨形成[27]。與X線平片相比,CT掃描能更準確地評估骨皮質(zhì)的變薄和穿破以及有無骨礦化。腫瘤內(nèi)出現(xiàn)礦化提示存在原發(fā)性骨肉瘤,需對此進行排除。(參見“骨腫瘤的診斷與活檢技術”)MRI尤其適合評估周圍軟組織(包括血管神經(jīng)結(jié)構(gòu))的完整性及病變在軟骨下延伸至鄰近關節(jié)的范圍。其特征性MRI表現(xiàn)為:膨脹的多血管性包塊,呈囊性改變;以及T1加權像示低到中等強度、T2加權像示中到高強度的不均一信號[28,29]。因為常有大量含鐵血黃素,T1和T2加權像中出現(xiàn)低信號強度區(qū)域[27]。根據(jù)影像學表現(xiàn),鑒別診斷可能包括:溶骨性轉(zhuǎn)移灶(尤其是來自腎細胞癌或甲狀腺癌的膨脹性多血管性轉(zhuǎn)移灶)、原發(fā)性骨腫瘤(如骨肉瘤)、甲狀旁腺功能亢進癥的棕色瘤、動脈瘤樣骨囊腫或非骨化性纖維瘤。(參見“原發(fā)性甲狀旁腺功能亢進癥的臨床表現(xiàn)”,關于‘纖維囊性骨炎’一節(jié)和“兒童及青少年良性骨腫瘤”)可能需要胸部CT評估有無肺轉(zhuǎn)移。但鑒于轉(zhuǎn)移性播散最常見于局部復發(fā)后,胸部CT通常僅用于有局部復發(fā)的患者。放射性核素骨掃描可能有助于多中心疾病分期,但對骨掃描適應證尚未達成明確的共識。骨掃描中的變化(腫瘤的中心對放射性示蹤劑的攝取通常會減少)并非GCTB所特有,動脈瘤樣骨囊腫也有類似表現(xiàn)。僅少量資料介紹了FDG-PET對新診GCTB的實用性。與許多良性骨腫瘤不同,GCTB會蓄積FDG示蹤劑,可能是因為破骨細胞樣巨細胞的代謝極其活躍[30,31]。但尚不清楚FDG-PET評估是否優(yōu)于常規(guī)影像學檢查(CT、MRI和骨掃描)。另一方面,F(xiàn)DG攝取隨時間的變化與腫瘤代謝和血管生成活性相關[32]。我們發(fā)現(xiàn),F(xiàn)DG-PET是檢測靶向治療效果的高度敏感性生物標志物,在臨床需要早期確認療效時可能比較有用。(參見下文‘RANKL抑制劑:地諾單抗’)分類和分期根據(jù)GCTB的組織學特點[2]和臨床/影像學表現(xiàn)[22,23,33-35],現(xiàn)已提出多種分類方法。例如,Campanacci分級系統(tǒng)根據(jù)臨床和影像學表現(xiàn)對患者作如下分層[22]:●Ⅰ級-骨內(nèi)病變,邊界清晰,骨皮質(zhì)完整?!瘼蚣?更廣泛的骨內(nèi)病變,骨皮質(zhì)薄但未喪失連續(xù)性。●Ⅲ級-骨外病變,即突破骨皮質(zhì),延伸入軟組織。但諸如這樣的分類系統(tǒng)的臨床實用性不高,它們與組織學表現(xiàn)的關聯(lián)不強,且基本不能提供有關局部復發(fā)和轉(zhuǎn)移性行為風險的預后信息。對于GCTB,一些臨床醫(yī)生會使用骨骼肌肉系統(tǒng)良性腫瘤Enneking分類(表 1)[34,36],此外還曾提出一種椎骨腫瘤補充分類系統(tǒng)(圖 3)[33,35],一些臨床醫(yī)生用過[11,36,37]。但是,這些分期系統(tǒng)尚未普及。美國癌癥聯(lián)合會發(fā)布的肉瘤TNM(tumor, node, metastasis)分期系統(tǒng)并不適合GCTB。自然病程盡管大多數(shù)GCTB通常為良性,但其疾病行為極其多變,無法預測。其局部侵襲程度不一,局灶性癥狀通常是骨破壞、骨皮質(zhì)穿透及擴展入軟組織所致。中軸骨內(nèi)的病變往往無法切除,可引起嚴重的、影響患者日?;顒幽芰Φ木植坎l(fā)癥。一些病例會表現(xiàn)出惡性腫瘤的行為,但“惡性”GCTB一詞包含多種疾病,因此易混淆。肺轉(zhuǎn)移—2%-3%的肢體巨細胞瘤會發(fā)生轉(zhuǎn)移,最常轉(zhuǎn)移至肺部。脊柱GCTB的轉(zhuǎn)移發(fā)生率可能較高,或許是因為該型腫瘤的次全切除率和局部復發(fā)率較高[38]。GCTB肺轉(zhuǎn)移的意義通常與其他實體瘤(如肉瘤)轉(zhuǎn)移的意義不同。大多數(shù)患者的臨床結(jié)局仍符合其通常為良性的腫瘤特征[39],故稱其為“良性”肺種植[10,26,27]。但在少數(shù)病例中,肺轉(zhuǎn)移(特別是伴有其他部位轉(zhuǎn)移時[40])會促其死亡[13,41]。大部分病例系列研究顯示,絕大部分肺轉(zhuǎn)移見于局部復發(fā)后[42,43]。例如,一項研究納入333例接受GCTB手術治療并隨訪至少2年的患者,報告有25例患者發(fā)生肺轉(zhuǎn)移,其中80%見于局部復發(fā)后[42]。118例局部復發(fā)患者中,有20例發(fā)生肺轉(zhuǎn)移(17%);而215例無局部復發(fā)的患者中,僅有2%發(fā)生肺轉(zhuǎn)移。但這并非普遍發(fā)現(xiàn)。另一項病例系列研究納入印度Tata Memorial醫(yī)院20年間診斷的470例GCTB患者,結(jié)果發(fā)現(xiàn)有24例發(fā)生遠處轉(zhuǎn)移,其中21例累及肺部[10],僅有13例(54%)在轉(zhuǎn)移性播散時或之前出現(xiàn)了局部復發(fā)。其他受累部位包括頭皮、腓腸肌以及區(qū)域淋巴結(jié)。GCTB肺轉(zhuǎn)移的其他危險因素包括:確診時年輕(平均25歲 vs 34歲)、Enneking Ⅲ期疾病(表 1),以及中軸骨(而非附肢骨)受累[44]。(參見“骨源性肉瘤的術前評估、組織學分型和外科治療原則”,關于‘腫瘤分期’一節(jié))惡性轉(zhuǎn)化—據(jù)報道,僅少數(shù)病例有GCTB真正自發(fā)性惡性轉(zhuǎn)化[45-49]。WHO用“巨細胞瘤中的惡性腫瘤”來命名出現(xiàn)于GCTB(原發(fā)性)或原先被證實為GCTB部位(繼發(fā)性)的高級別肉瘤[50]。由于大多數(shù)報告都是單一病例,GCTB自發(fā)性惡性轉(zhuǎn)化的發(fā)生率不詳。但瑞典1983-2011年間的人群登記數(shù)據(jù)表明,“惡性”GCTB在全部GCTB診斷中占比高達8%[8]。這些病例在多大程度上代表了良性GCTB的真正轉(zhuǎn)化情況,目前還不清楚。據(jù)報道,放療會增加惡性轉(zhuǎn)化風險。但放療后的部分GCTB“惡性轉(zhuǎn)化”病例屬于放療相關肉瘤[51,52]。其他病例中,當發(fā)現(xiàn)原發(fā)性惡性GCTB時,可能是伴有明顯出血區(qū)域及巨細胞反應的原發(fā)性骨肉瘤(初始診斷漏診),而非GCTB的惡性轉(zhuǎn)化[53]。(參見“放療相關肉瘤”)當GCTB中真正出現(xiàn)惡性轉(zhuǎn)化時,其預后比良性GCTB差,但與其他高級別肉瘤相當。有2項病例系列研究分別納入了28例和26例惡性GCTB患者,5年生存率分別為50%和82%[45,48]。診斷確診有賴于活檢結(jié)果。肉眼觀,GCTB為微紅色肉質(zhì)腫瘤,通常含有囊性、出血性區(qū)域。腫瘤可能突破骨皮質(zhì)并延伸入軟組織,基本沒有骨膜反應。組織學—鏡下,該腫瘤由成片的圓至卵圓形、多角形或細長的單個核細胞組成,較大的破骨細胞樣巨細胞均勻地散布其中[27]。當腫瘤出現(xiàn)在肺部時,其組織學特征與原發(fā)性腫瘤一致(包括存在巨細胞)?,F(xiàn)認為顯著的多核細胞(可能超過腫瘤中細胞總量的50%)源于循環(huán)單核細胞,其在骨環(huán)境中轉(zhuǎn)化為破骨細胞。光鏡下、超微結(jié)構(gòu)及免疫學標志物的研究均支持該結(jié)論[54-58]?,F(xiàn)公認,該病特征性的大破骨細胞樣巨細胞不是腫瘤細胞。而代表腫瘤性成分的單個核細胞被認為來源于原始間充質(zhì)基質(zhì)細胞[59]。此類細胞具有成骨祖細胞的特征[60,61],可表達核因子-κB受體活化因子配體(receptor activator of nuclear factor kappa B ligand, RANKL),這種生長因子對于成骨細胞募集破骨細胞及破骨細胞在正常生理條件下的成熟必不可少。(參見下文‘組織來源和分子學發(fā)病機制’)在診斷存疑時,檢測是否存在H3組蛋白家族3A(H3F3A)基因突變可能有助于確診。(參見下文‘鑒別診斷’和‘分子學發(fā)病機制’)良性和“惡性”巨細胞瘤可能難以區(qū)別,因為要在反應性巨細胞的“海洋”中發(fā)現(xiàn)轉(zhuǎn)化元素(不典型細胞)可能相對較難??招踞樆蚣氠槾┐袒顧z時的固有取樣局限性,會加大鑒別難度。重要的是,組織學分級對局部侵襲性行為或發(fā)生轉(zhuǎn)移并無預測價值[27]。基質(zhì)細胞未表現(xiàn)出提示惡性的細胞學特征,除非出現(xiàn)了惡性轉(zhuǎn)化(該情況罕見)。(參見上文‘自然病程’)鑒別診斷—GCTB的鑒別診斷涉及其他富含巨細胞和富含破骨細胞的腫瘤,包括動脈瘤樣骨囊腫、非骨化性纖維瘤、干骺端纖維性缺損、富巨細胞性骨肉瘤、軟骨母細胞瘤、甲狀旁腺功能亢進癥相關性棕色瘤,以及轉(zhuǎn)移癌[9]。(參見“兒童及青少年良性骨腫瘤”)如上所述,H3F3A基因突變可用于鑒別GCTB與其他病變,因為高達96%的長骨GCTB病例中識別出此突變[62,63]。使用針對H3F3A突變位點G34W的單克隆抗體進行免疫組化染色,95%-100%的長骨GCTB病例結(jié)果呈陽性[64]。需注意,在GCTB少見的部位(即,手足的小骨骼和椎骨),G34W突變和H3F3A的免疫組化表達頻率較低(分別為56%和0-42%)[62,65]。但H3F3A中存在突變并不完全排除為其他富含破骨細胞的惡性腫瘤,例如軟骨母細胞瘤、動脈瘤性骨囊腫或非骨化性纖維瘤[62,66]。特別是,軟骨母細胞瘤中組蛋白3.3基因突變率高[66]。組織來源和分子學發(fā)病機制GCTB的組織來源尚不完全清楚。雖然目前認為其腫瘤成分來源于基質(zhì)部分,但具體細胞來源不詳?;|(zhì)細胞沒有顯示惡性腫瘤的細胞學特征。這一點加上另外2種情況,即基質(zhì)細胞在半固體培養(yǎng)基中無法形成克隆[59,67],以及在大多數(shù)研究中未見GCTB有克隆性細胞遺傳學結(jié)構(gòu)畸變[41,56,68],令部分學者質(zhì)疑GCTB是真正的腫瘤還是反應性疾病[69]。不過,至少一項陣列比較基因組雜交研究在54%的GCTB中發(fā)現(xiàn)了20q11擴增,因此能支持腫瘤性病因[70]。在GCTB病例中報道過中心體擴增,其與復發(fā)有關聯(lián)[71]。此外,在GCTB中常報道存在端粒酶活性增加及端粒縮短受阻[72]。資料顯示,20%的GCTB中存在p53過度表達,體現(xiàn)了該基因發(fā)生突變,與復發(fā)和轉(zhuǎn)移風險增加相關[73]。這些分子學特征通常被當作新生物具有腫瘤性質(zhì)的“證據(jù)”,分子學發(fā)病機制—RANKL對GCTB的發(fā)病機制至關重要。在正常生理條件下,破骨細胞的形成需要成骨細胞系細胞相互作用,這可能有賴于細胞間的接觸及RANKL與其受體RANK的相互作用,其中RANKL即TNF配體家族的成員[也稱破骨細胞分化因子(osteoclast differentiation factor, ODF)或TNF相關活化誘導性細胞因子(TNF-related activation-induced cytokine, TRANCE;MIM 60264)](圖 4)[74-76]。RANK在單核細胞上高表達,而其配體RANKL則由多種細胞表達,包括基質(zhì)細胞和淋巴細胞。多種共調(diào)節(jié)分子也參與了破骨細胞的形成,包括集落刺激因子1、維生素D、甲狀旁腺激素和甲狀旁腺激素相關性蛋白(PTHrP),以及前列腺素類。骨骼發(fā)育詳見其他專題。(參見“正常骨骼發(fā)育及骨形成與骨吸收的調(diào)節(jié)”)據(jù)報道,GCTB內(nèi)的基質(zhì)細胞高表達RANKL[56,60,77,78]?;|(zhì)細胞也分泌可抑制或調(diào)節(jié)破骨細胞形成的因子,包括骨保護素,其可阻斷成骨細胞/破骨細胞相互作用,并起到RANKL分泌性天然負性調(diào)節(jié)因子的作用[55,75]。CGCG是累及頜骨的相關病變,含有大量多核細胞,也表達高水平的RANKL[79]。(參見上文‘流行病學’)現(xiàn)認為,成骨細胞樣單個核基質(zhì)細胞表達的RANKL,可刺激破骨細胞(來自正常單核破骨前體細胞)的募集。而后,破骨細胞樣巨細胞可通過組織蛋白酶K和基質(zhì)金屬蛋白酶13介導的過程主動吸收宿主骨,這便是此類腫瘤引起骨質(zhì)溶解的原因[55,80,81]。關于RANKL信號對GCTB發(fā)病機制的重要性,一項地諾單抗早期Ⅱ期試驗提供了最有說服力的數(shù)據(jù),其證實阻斷RANKL信號是該病強有效的治療策略。(參見下文‘RANKL抑制劑:地諾單抗’)但基質(zhì)細胞并無RANKL基因(位于染色體13q14位點)的擴增及易位,故其高度表達RANKL的機制尚未闡明。有資料表明,轉(zhuǎn)錄因子CCAAT/增強子結(jié)合蛋白β(C/EBPβ)表達過度并調(diào)控RANKL,但驅(qū)使C/EBPβ表達的動力不詳[82]。Noonan綜合征的亞型可伴有富巨細胞性病變,據(jù)報道,該綜合征與酪氨酸蛋白磷酸酶非受體11型(PTPN11)基因或SOS1(son of sevenless homolog 1)基因的種系突變相關[20,83-85],但未報告與RANKL表達的關聯(lián)。腫瘤發(fā)生可能由表觀遺傳組蛋白修飾驅(qū)動,如H3F3A基因突變,超過90%的GCTB可發(fā)現(xiàn)此類突變。據(jù)報道,這些突變限于基質(zhì)細胞群,在破骨細胞或其前體中未檢出[66]。盡管這是所報道的唯一反復發(fā)生的突變,但似乎也未充分解釋GCTB的病理生物學[86]。無論是何種驅(qū)動性突變事件,都可能存在如下情況:腫瘤基質(zhì)細胞具備一種不成熟的成骨細胞表型,除早期成骨細胞系的其他標志物之外,其轉(zhuǎn)錄庫還包括RANKL[60]。也有人推測,基質(zhì)細胞的激活并不是某些內(nèi)在遺傳學變化的結(jié)果,而是由于局部出血誘發(fā)的紅細胞和血漿蛋白釋放入基質(zhì)。最后,巨細胞瘤內(nèi)兩種主要細胞類型間的復雜關系尚不完全清楚,未經(jīng)確認的、來自巨細胞的交互信號可能參與了基質(zhì)細胞未成熟狀態(tài)的維持。雖然GCTB的分子學發(fā)病機制仍有許多內(nèi)容有待了解,但現(xiàn)有認知使我們發(fā)現(xiàn)RANKL是治療該病的主要分子靶點。(參見下文‘RANKL抑制劑:地諾單抗’)局部治療附肢骨腫瘤—附肢骨GCTB首選手術治療。對于潛在可切除的骨內(nèi)病變(原發(fā)性或復發(fā)性),我們推薦病灶內(nèi)刮除術,之后采用骨水泥[聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)]填充腔洞,而非單純刮除。采用輔助材料(如骨水泥)填充刮除后的腔洞可降低局部復發(fā)風險。(參見下文‘局部輔助療法’)更廣泛手術的指證包括:病變延伸至骨外、腫瘤累及腓骨近端或尺骨遠端、再次復發(fā)或此后又復發(fā)、脫位的病理性骨折,或關節(jié)面破壞嚴重。(參見下文‘外科手術’)對于潛在可切除GCTB的患者,若其初始手術會導致功能受損或嚴重并發(fā)癥,或者不適合手術,其初始治療應考慮地諾單抗而非切除術。必須權衡在此情況下長期使用地諾單抗的利(抗腫瘤作用)與弊(頜骨骨質(zhì)壞死等副作用)。(參見下文‘新輔助地諾單抗’)進一步刮除術+局部輔助療法可成功治療潛在可切除的局部復發(fā)性GCTB,且并發(fā)癥增加的風險較小。再次復發(fā)或此后又復發(fā)病例需要更廣泛的手術。對于不可切除的局部復發(fā)性病變患者,可選擇放療、動脈栓塞和全身性治療。局部復發(fā)性GCTB患者應篩查胸部CT以排除肺轉(zhuǎn)移。(參見下文‘局部復發(fā)的處理’)外科手術—附肢骨GCTB的外科治療選擇包括:病灶內(nèi)刮除術(單純刮除,或刮除后以骨水泥填充缺損聯(lián)合或不聯(lián)合骨移植[87])、邊緣性切除、局部擴大切除,或者整塊切除聯(lián)合或不聯(lián)合重建手術。所選手術類型取決于腫瘤相對于周圍結(jié)構(gòu)的位置和大小、腫瘤范圍,以及有無病理性骨折(可能不利于選擇重建手術)[88,89]。所報道的局部復發(fā)率有很大差異,具體取決于切除范圍及在行病灶內(nèi)刮除術的同時是否聯(lián)合輔助療法(見下文)。手術切緣狀態(tài)仍是公認的結(jié)局預測最佳單項指標[22,90]。整塊切除或局部擴大切除的復發(fā)率最低。單純病灶內(nèi)刮除術的復發(fā)率高達50%[22,91-94],在某些部位(橈骨遠端或股骨近端)可能更高[95]。單純刮除術雖然術后固有局部復發(fā)風險高,但以后有可能成功治療復發(fā)灶,而且較大范圍切除可造成功能缺損和后續(xù)風險,因此必須綜合考慮[96,97]。除了腓骨近端和尺骨遠端外,整塊切除或?qū)捛芯壡谐龝斐晒δ軉适В斜匾兄匾P節(jié)重建術。因此,鑒于GCTB通常良性的行為,且病灶內(nèi)刮除術+輔助療法(如骨水泥)時局部控制率較高,我們不推薦整塊或?qū)捛芯壡谐米鳂藴石煼╗90,93]。(參見下文‘局部輔助療法’)整塊切除一般僅用于累及腓骨近端或尺骨遠端、病變延伸至骨外、再次復發(fā)或此后又復發(fā),或者部分病理性骨折病例:●在一些病例系列研究中,腫瘤局限于骨的患者行單純刮除術后復發(fā)率較低,但在骨外病變患者中復發(fā)率高[98]。因此,過去一直對延伸至骨外的病變(即Campanacci Ⅲ級病變(參見上文‘分類和分期’))采取整塊切除術[99-101]。一些資料支持采用病灶內(nèi)刮除術聯(lián)合使用骨水泥可成功治療延伸至骨外的GCTB[88,89,102],但未廣泛采納?!褚恍┎±盗醒芯匡@示,病理性骨折是局部復發(fā)的危險因素[24,103],因此部分專家建議,此類病例不應行病灶內(nèi)刮除術。但其他人發(fā)現(xiàn),就診時有或無病理性骨折的GCTB患者中,局部復發(fā)率并無差異[25]。必須根據(jù)骨折性質(zhì)及重建的意義,個體化處理這類患者。若關節(jié)面破壞嚴重或存在關節(jié)內(nèi)脫位性骨折,則通常推薦整塊切除[24]。局部復發(fā)GCTB的處理見下文。(參見下文‘局部復發(fā)的處理’)局部輔助療法—為降低病灶內(nèi)刮除術后的局部復發(fā)率,曾嘗試過多種外科輔助療法。例如,使用骨水泥(PMMA)[24,91,96]、氯化鋅水溶液[104]、苯酚[105,106]、冷凍療法聯(lián)合或不聯(lián)合骨水泥[92,107,108]、氬氣刀[46],以及使用高速磨鉆去除腫瘤周圍的骨組織[13,109]。目前尚無隨機試驗支持加用局部輔助療法優(yōu)于單純刮除術。同時期的回顧性病例系列研究顯示,采用病灶內(nèi)刮除術+局部輔助療法治療的患者中,局部復發(fā)率為13%-22%[24,88,92,110],可媲美局部擴大切除術。但一項大型病例系列研究表明,若手術充分刮除腫瘤,則采用局部輔助療法并無益處[111]。目前也沒有試驗比較過不同輔助療法的結(jié)局。但骨水泥已成為優(yōu)先選擇的輔助材料。采用骨水泥填充刮除術后骨缺損后立刻就能負重,骨水泥發(fā)熱有利于殺死殘留的腫瘤細胞,可以降低局部復發(fā)風險[112,113]。此外,用骨水泥填充腔洞的影像學特征十分有利于早期發(fā)現(xiàn)局部復發(fā)。斯堪的納維亞肉瘤協(xié)作組的一項回顧性病例系列研究顯示,采用骨水泥填充刮除術后腔洞會產(chǎn)生有益影響[24]。在接受病灶內(nèi)手術的患者中,與術后未使用骨水泥組(n=47)相比,骨水泥填充腔洞組(n=147)的復發(fā)率顯著更低(22% vs 56%)。在27例病灶內(nèi)手術后僅采用骨移植物填充腔洞者中,局部復發(fā)率為61%。新輔助地諾單抗—根據(jù)共識指南(National Comprehensive Cancer Network),對于潛在可切除GCTB的患者,若其初始手術會導致不可接受的功能受損或嚴重并發(fā)癥,初始治療適合使用地諾單抗而非切除術。地諾單抗是一種抗RANKL的完全人源單克隆抗體,而RANKL是GCTB發(fā)病機制的關鍵點。(參見下文‘RANKL抑制劑:地諾單抗’和‘組織來源和分子學發(fā)病機制’)非隨機試驗的數(shù)據(jù)表明,對于初始擬行手術會引起功能受損或嚴重并發(fā)癥的GCTB患者,使用地諾單抗新輔助治療可降低手術分級[114,115]:●一項關于地諾單抗新輔助治療的開放性Ⅱ期研究納入了222例初始手術可能會引起功能受損或并發(fā)癥的原發(fā)性或復發(fā)性GCTB患者,其早期報告顯示,116例患者最終接受了手術(主要是刮除術),術后中位13.6個月時,局部復發(fā)率為15%[114]。地諾單抗治療的中位持續(xù)時間為14.2個月。而單純病灶內(nèi)刮除術后的復發(fā)率高達50%。(參見上文‘外科手術’)●一項回顧性多中心分析納入了138例在臨床試驗以外使用地諾單抗的患者,其中89例局部晚期或無法手術的GCTB患者在使用地諾單抗后接受了手術治療[115]。地諾單抗新輔助治療的中位持續(xù)時間為8個月,有效率為98%。39例患者(44%)可行擴大整塊切除術,其余則為病灶內(nèi)刮除術??傮w而言,病灶內(nèi)刮除術組有16例復發(fā),而擴大整塊切除術組有3例復發(fā)。2年總體無進展生存率為81%,與病灶內(nèi)刮除術組相比,擴大整塊切除術組的(術后)無事件生存率顯著更高(93% vs 55%;P=0.006)。這些與其他臨床報告[116-118]表明,地諾單抗對腫瘤有一定療效,可降低手術分級以及減少手術并發(fā)癥,但大部分報告都僅是短期隨訪,并且只有少數(shù)患者在使用地諾單抗后接受了病灶內(nèi)手術。以下是一些擔憂的問題[119]:●使用地諾單抗時出現(xiàn)的新骨質(zhì)腫瘤基質(zhì)和皮質(zhì)骨增厚,導致外科醫(yī)生不能確定腫瘤的真實范圍,并可能增加病灶內(nèi)治療后局部復發(fā)的風險[120,121]。另一方面,地諾單抗治療后的整塊切除不會增加局部復發(fā)的風險[121,122]。●既往無輻射暴露的患者曾報道地諾單抗治療期間巨細胞瘤惡變,而迄今最大型的試驗顯示,該惡變率約為1%[114,116,118,123,124]?!袢鄙倜吭率褂玫刂Z單抗120mg相關毒性的長期數(shù)據(jù)。一項報告(n=97)顯示,43例患者在中位12個月(6-45個月)地諾單抗治療后接受了切除術,而54例患者在接受中位54個月(9-115個月)地諾單抗治療后,腫瘤仍不可切除[125]??傮w而言,6例患者發(fā)生了頜骨骨質(zhì)壞死,其中可切除組中有1例(2%),不可切除組中有5例(9%)。只有長期治療的患者出現(xiàn)了輕度周圍神經(jīng)病變(6/54;11%)、皮疹(5/54;9%)、低磷血癥(2/54;4%)以及非典型股骨骨折(2/54;4%)。但對于經(jīng)過恰當選擇并充分知曉潛在風險的患者,可能利大于弊,至少在腫瘤最初無法切除或手術可能導致嚴重并發(fā)癥(如截肢或關節(jié)切除)時如此。2013年6月,美國批準地諾單抗用于無法手術切除GCTB或手術很可能造成嚴重并發(fā)癥(如截肢或關節(jié)切除)的患者。該批準是依據(jù)一項回顧性研究,其數(shù)據(jù)來自2項臨床試驗[116,118]中接受治療的305例成人或青少年患者,他們的GCTB原本無法切除或手術會造成嚴重并發(fā)癥[126]。平均使用地諾單抗治療3個月以后,187例病變可測量患者中有47例的腫瘤縮小,在平均20個月的觀察期后,僅3例出現(xiàn)腫瘤再生長。劑量和療程—美國FDA批文并未規(guī)定劑量或治療持續(xù)時間。迄今用于試驗的GCTB治療方案是:地諾單抗一次120mg,皮下給藥,每28日1次,第1個月的第8日和第15日各加用1劑負荷劑量。術前地諾單抗治療的最佳持續(xù)時間尚未確定,但手術時機通常是根據(jù)影像學顯示的骨修復率?;颊咄ǔV委熂s6個月??紤]到長期治療的風險[125],地諾單抗治療持續(xù)到患者可以手術即可。地諾單抗輔助治療—現(xiàn)有證據(jù)不足以支持GCTB手術后常規(guī)使用地諾單抗,有待獲得進一步信息。尚不清楚地諾單抗聯(lián)合手術治療能否降低局部復發(fā)率,該問題有爭議[119]。該藥物在輔助治療中的作用還在研究中。局部復發(fā)的處理—所有局部復發(fā)中,有3/4在2年內(nèi)發(fā)生,其余在5年內(nèi)發(fā)生[24,103,127,128]。因此,沒有必要監(jiān)測5年以上,但功能結(jié)局監(jiān)測除外,尤其是在重建手術之后。通常,進一步刮除術+局部輔助療法可成功治療潛在可切除的局部復發(fā)性GCTB,且并發(fā)癥增加的風險較小[97,127,129]。再次復發(fā)或此后又復發(fā)病例需要更廣泛的手術。對于不可切除的局部復發(fā)性病變患者,可選擇地諾單抗、RT或動脈栓塞。(參見下文‘對不可切除或轉(zhuǎn)移性疾病的全身治療’)鑒于大多數(shù)肺轉(zhuǎn)移發(fā)生在有局部復發(fā)性病變患者中,若局部復發(fā),適合通過胸部CT或胸片強化肺監(jiān)測[13,42,130]。當前指南(NCCN)推薦采用這種方案監(jiān)測患者。(參見下文‘肺轉(zhuǎn)移’和‘治療后監(jiān)測’)放療—GCTB是一種放射敏感性腫瘤,因此放療非常有效,長期局部控制率為60%-84%[49,131-137],對8.5cm以上的腫瘤和局部復發(fā)性病變的控制率最低[131,135]。若有手術禁忌證,或陰性手術切緣必定會引發(fā)不可接受的并發(fā)癥,則適合放療。例如,位于中線的較大骶骨GCTB可能就是這樣。若可保全一組骶神經(jīng),且術后排尿和排便功能尚可,或許能切除位于中線一側(cè)的較小骶骨腫瘤而不會引發(fā)不可接受的并發(fā)癥。但完全切除位于中線的較大骶骨GCTB,必然會犧牲兩組骶神經(jīng),從而導致永久性大小便失禁。對于脊柱GCTB,也可將放療用作輔助療法,以降低病灶內(nèi)手術后的局部復發(fā)率[138,139]。尚無試驗比較此情況下進行放療與局部輔助療法(如骨水泥或鉆磨)??紤]到該病患者大多比較年輕,對放療的主要擔憂是放射相關惡性轉(zhuǎn)化的風險[133,140,141]。該風險的大小尚未完全確定。雖然幾項報告提出,此類患者中并無惡性腫瘤風險增加[132,134,142-144],但至少一項病例系列研究發(fā)現(xiàn),因原發(fā)性或復發(fā)性GCTB而放療的患者中,發(fā)生放射誘導性肉瘤的風險為11%[145]。(參見“放療相關肉瘤”)指南(NCCN)建議,僅當別無選擇時才考慮放療,這主要是擔憂惡性轉(zhuǎn)化。但需注意,見刊病例系列研究納入了接受老式正電壓放療技術治療的患者,其骨骼吸收的放射劑量遠遠高于處方劑量。預計采用現(xiàn)代兆伏級照射的惡性轉(zhuǎn)化率較低。近期一項大型病例系列研究顯示,在1985-2007年間采用兆伏級放療的77例患者中,惡性轉(zhuǎn)化率為2%[49]。一些新型技術(如調(diào)強放療)的前景不錯,但僅有初步數(shù)據(jù)[146]。我們認為,對于獲得理想手術切緣必定會引發(fā)不可接受的并發(fā)癥(例如,兩組骶神經(jīng)根都會犧牲的中線較大骶骨GCTB)的GCTB患者,或不適合手術治療的患者,仍適合采用現(xiàn)代放療技術。骶骨腫瘤—中線較大骶骨GCTB難以治療,因為會犧牲兩組骶神經(jīng)根,手術的并發(fā)癥和致殘風險很高。此外,RT至少有引發(fā)遠期惡性轉(zhuǎn)化的風險。動脈栓塞術治療曾有成功的報道,但公開的經(jīng)驗有限[147,148]。當局部治療會引發(fā)不可接受的并發(fā)癥或風險時,也可選擇地諾單抗全身治療。治療必須個性化,權衡地諾單抗終生暴露的風險與放療風險,但兩者都難以估計。(參見下文‘對不可切除或轉(zhuǎn)移性疾病的全身治療’和‘放療’)脊柱腫瘤—脊柱巨細胞瘤治療有難度。應盡可能實現(xiàn)完全手術切除,特別是有明顯神經(jīng)系統(tǒng)受損時。但地諾單抗也有效,特別是對于腫瘤無法切除的患者和腫瘤處于高風險部位的患者;有時可能實現(xiàn)疾病長期控制。因為患者各有各的難處,應個體化處理。脊柱GCTB的預后總體不及附肢骨GCTB,局部復發(fā)率較高[149]。尚不確定最佳局部治療方式。病灶內(nèi)刮除術后的局部復發(fā)率高,且術后脊柱復發(fā)的治療可能要求很高,給患者帶來很大的手術風險[11]。輔助治療(如,骨水泥)通常不用于脊軸,因為可能對神經(jīng)系統(tǒng)造成醫(yī)源性損傷。另一方面,雖然脊柱整塊切除術后的局部復發(fā)率較低[11,149,150],但手術復雜,并因解剖學限制可能難以實施。此外,獲得理想手術切緣可能會引發(fā)嚴重或不可接受的并發(fā)癥或失能。但鑒于局部復發(fā)與死亡率的相關性,若技術上可行,應實施整塊切除。不斷有報告顯示,術前使用地諾單抗可能有益,因此對于不可切除的或高風險的脊柱巨細胞腫瘤,或許可用這種方法[122,151-154]。雖然關于初始使用地諾單抗的恰當適應證尚未達成共識,但NCCN指南支持其用于局部無法切除的GCTB(包括脊柱GCTB)。有時可能因此而避免手術。據(jù)報道,有原發(fā)性和復發(fā)性脊柱巨細胞瘤病例使用地諾單抗后獲得長期影像學完全消退[155,156],不過此情況的發(fā)生率不詳。(參見下文‘RANKL抑制劑:地諾單抗’)肺轉(zhuǎn)移局部復發(fā)會伴有“良性”肺種植風險增高。肺轉(zhuǎn)移患者的臨床結(jié)局仍符合GCTB一般為良性這一特征,不過致死病例也有報道[13]。肺轉(zhuǎn)移灶也可自發(fā)消退[39,43,157]。(參見上文‘自然病程’)鑒于肺轉(zhuǎn)移自然病程具有不確定性,一些醫(yī)療中心對此類患者僅做觀察[158,159]。但對于潛在可切除病變,我們更常推薦手術切除,主要是因為有可能出現(xiàn)致死結(jié)局,以及未經(jīng)治療的肺轉(zhuǎn)移可造成咯血[10]。若選擇觀察,則需胸部CT密切監(jiān)測,以盡早檢出腫瘤進展或其他并發(fā)癥。切除術后預后通常良好[10,43,158,160,161],但個體病程仍無法預測[13]。對于不適合手術或拒絕胸腔手術的肺轉(zhuǎn)移患者、從技術上講轉(zhuǎn)移灶無法切除,或術后出現(xiàn)復發(fā)或進展的患者,一些學者主張采用低劑量全肺放療[110]。也可選擇地諾單抗治療。(參見下文‘RANKL抑制劑:地諾單抗’)對不可切除或轉(zhuǎn)移性疾病的全身治療RANKL抑制劑:地諾單抗—RANK/RANKL軸在介導破骨細胞樣細胞的募集和功能中發(fā)揮作用,這為該路徑的靶向治療(如地諾單抗)提供了重要依據(jù)。對于存在持續(xù)性不可切除或轉(zhuǎn)移性GCTB的患者,我們建議使用地諾單抗而非其他形式的全身治療。但地諾單抗治療GCTB的長期影響尚不完全清楚,可能包括嚴重并發(fā)癥,如頜骨骨質(zhì)壞死。如上所述,RANKL對GCTB的發(fā)病機制至關重要。研發(fā)出靶向RANKL的高度特異性藥物后,該病的分子靶向治療引起了極大關注。(參見上文‘組織來源和分子學發(fā)病機制’)地諾單抗是一種針對RANKL的完全人源單克隆抗體。最初一項開創(chuàng)性Ⅱ期試驗顯示該藥對GCTB患者有益,試驗中37例復發(fā)性或無法切除GCTB的患者接受了地諾單抗治療,一次120mg,每28日1次,皮下給藥,第1個月的第8日和第15日各加用1劑負荷劑量[116]。30例患者(86%)經(jīng)治療獲得客觀緩解(定義為:最遲在治療的第25周,組織學評估顯示≥90%的巨細胞消失,或未見靶病灶有影像學進展)?;颊哌€出現(xiàn)了骨轉(zhuǎn)換標志物的持續(xù)抑制,早在首次用藥后第28日出現(xiàn),并持續(xù)整個研究;此外FDG的攝取減少,提示FDG-PET可能是GCTB臨床緩解的一項早期、敏感標志[162]。通常治療的耐受性良好。雖然33例患者(89%)報告了不良事件,但最常見的為肢體痛(n=7)、背痛(n=4)或頭痛(n=4)。達到≥3級的5例不良反應中,只有1例(3級,與妊娠無關的人絨毛膜促性腺激素增高)考慮與治療有關。高水平的客觀抗腫瘤活性得到了其他研究的證實[117]。組織學結(jié)果顯示,地諾單抗顯著減少了巨細胞或?qū)⑵湎€減少了可能為腫瘤性基質(zhì)細胞的相對含量,同時促進了新骨形成[163,164]。另外,一項關于5例相關病癥CGCG患者的報告表明,對于難以根治的大塊腫瘤,地諾單抗可能有相似的效用[165]。(參見上文‘流行病學’)地諾單抗對GCTB人群長期影響的信息很少,制定治療決策時應考慮到這一點:●一些隨機臨床研究在癌癥患者中比較了地諾單抗和雙膦酸鹽,針對這些研究數(shù)據(jù)的meta分析表明,使用地諾單抗后,頜骨骨質(zhì)壞死發(fā)生率輕度增加但無統(tǒng)計學意義(1.7% vs 1.1%[166]),不過隨著這些地諾單抗試驗的隨訪期延長,相對危險度可能有改變。與雙膦酸鹽一樣,地諾單抗治療的持續(xù)時間會影響風險,但至少有些數(shù)據(jù)支持風險在第2-3年期間保持穩(wěn)定。(參見“癌癥患者的藥物相關頜骨壞死”,關于‘地諾單抗’一節(jié))●如上所述,一項回顧性報告(n=97)提供了長期地諾單抗使用數(shù)據(jù),其中43例患者在中位12個月(6-45個月)地諾單抗治療后接受了切除術,而54例患者在接受中位54個月(9-115個月)地諾單抗治療后,腫瘤仍不可切除[125]。總體而言,6例患者發(fā)生了頜骨骨質(zhì)壞死,包括不可切除組54例患者中的5例(9%)。只有長期治療的患者出現(xiàn)了輕度周圍神經(jīng)病變(6/54;11%)、皮疹(5/54;9%)、低磷血癥(2/54;4%)以及非典型股骨骨折(2/54;4%)。(參見上文‘新輔助地諾單抗’)同樣,有多項病例報告顯示地諾單抗治療時,GCTB發(fā)生了惡性轉(zhuǎn)化[123,167,168],但尚不清楚轉(zhuǎn)化率是否高于這一風險人群的預期值。(參見上文‘新輔助地諾單抗’)如上所述,2013年6月,美國批準地諾單抗用于無法手術切除GCTB或手術很可能造成嚴重并發(fā)癥(如截肢或關節(jié)切除)的患者。(參見上文‘新輔助地諾單抗’)迄今用于試驗的GCTB治療方案是:地諾單抗一次120mg,皮下給藥,每28日1次,第1個月的第8日和第15日各加用1劑負荷劑量。雙膦酸鹽—體外研究表明,雙膦酸鹽或許能有效殺死GCTB的基質(zhì)細胞和破骨細胞樣細胞[169,170]。少量臨床報告發(fā)現(xiàn),該藥可改善癥狀,并控制局部病變,有時會持續(xù)較長時間[170-172]。但在術前治療后未見腫瘤巨細胞根除[171,173]。鑒于大多數(shù)雙膦酸鹽研究都早于地諾單抗試驗,其在GCTB患者臨床治療中的作用仍有待明確?;熀透蓴_素—多項研究報道了應用細胞毒化療(異環(huán)磷酰胺、環(huán)磷酰胺、多柔比星和順鉑)處理無法切除的晚期GCTB[39,41,48,174-177](在一些病例中還用于骨外腫瘤[178]),但這些都不是隨機對照試驗。鑒于該病通常為良性,其他療法效果優(yōu)、耐受好,除非是真正惡性的GCTB,一般不將化療視作標準療法。干擾素已用于治療“侵襲性”病變,但存在顯著副作用[179,180]。雖然個案數(shù)據(jù)提示干擾素有抗腫瘤活性[13,179,180],但因缺乏前瞻性研究,其效用仍未得到證實,尤其是在地諾單抗問世后。雖然指南(National Comprehensive Cancer Network)建議,對于無法接受連續(xù)動脈栓塞、地諾單抗或放療的GCTB患者,也可選擇干擾素α2b,但是鑒于耐受性差,給予干擾素有一定難度,因此要綜合考慮。皮質(zhì)類固醇—在伴骨外巨細胞瘤的Paget病患者中,一些資料表明用類固醇治療可達到局部控制[181,182]。據(jù)報道,在下頜骨CGCG病例中,曲安西龍局部注射入腫瘤也可有效控制GCTB的生長[183]。治療后監(jiān)測關于任意部位GCTB的合適治療后監(jiān)測,尚未達成共識。NCCN共識指南推薦以下方案:●體格檢查和根據(jù)臨床需要對手術部位實施影像學檢查(X線平片;增強CT聯(lián)合或不聯(lián)合增強MRI)?!裥夭坑跋駥W檢查每6個月1次,持續(xù)2年,之后每年1次。我們通常在治療后3個月使用低劑量CT檢查原發(fā)部位,然后每6個月1次,持續(xù)2-3年,接下來每年1次。隨訪至少5年,因為局部復發(fā)可能發(fā)生得很晚[36]。但調(diào)整個體患者的術后影像學檢查頻率需要臨床判斷;最重要的考慮因素之一是進一步手術干預的效用??偨Y(jié)與推薦●骨巨細胞瘤(GCTB)是一種交界性骨腫瘤,但有局部侵襲性,一般表現(xiàn)為年輕成人長骨骨骺區(qū)的溶骨性病變,通常出現(xiàn)在膝關節(jié)周圍。(參見上文‘引言’)●GCTB的臨床行為不可預測。盡管視為良性病變,但單純刮除術后往往局部復發(fā),甚至可發(fā)生轉(zhuǎn)移。正如其名“良性”肺種植,GCTB肺轉(zhuǎn)移的預后并不像其他轉(zhuǎn)移瘤那樣糟糕。極少數(shù)巨細胞瘤病例會發(fā)生原發(fā)性惡變。沒有臨床、組織學及影像學參數(shù)能準確預測其侵襲性行為。(參見上文‘自然病程’)●所有患者均需接受原發(fā)部位影像學檢查,包括X線平片和橫斷面成像(增強CT聯(lián)合或不聯(lián)合增強MRI)。指南(National Comprehensive Cancer Network)推薦利用胸部CT來評估肺轉(zhuǎn)移。但鑒于轉(zhuǎn)移性播散最常見于局部復發(fā)后,我們通常僅為局部復發(fā)性病變患者安排胸部CT。其他患者則適合普通胸片。放射性核素骨掃描可能適用于多中心疾病分期,但對骨掃描適應證尚未達成明確共識。(參見上文‘影像學診斷性檢查’)●附肢骨GCTB首選手術治療。對于可能切除的骨內(nèi)病變(原發(fā)性或復發(fā)性),我們推薦病灶內(nèi)刮除術,之后采用骨水泥[聚甲基丙烯酸甲酯(PMMA)]填充,而不能單純刮除(Grade 1B)。(參見上文‘外科手術’)更廣泛的手術指征包括:延伸至骨外、腫瘤累及腓骨近端或尺骨遠端、再次復發(fā)或此后又復發(fā)、脫位性病理性骨折,或關節(jié)面受到嚴重破壞。對于潛在可切除的GCTB患者,若其初始手術會導致功能受損或嚴重并發(fā)癥,則初始治療可用地諾單抗替代切除術。此時長期使用地諾單抗必須權衡利(抗腫瘤作用)與弊(頜骨骨質(zhì)壞死等副作用)。(參見上文‘新輔助地諾單抗’)進一步刮除術+局部輔助療法可成功治療潛在可切除的局部復發(fā)性附肢骨GCTB,且并發(fā)癥增加的風險較小。再次復發(fā)或此后又復發(fā)病例需要更廣泛的手術。對于不可切除的局部復發(fā)性病變患者,可選擇地諾單抗、放療或動脈栓塞。局部復發(fā)者肺轉(zhuǎn)移的風險增高。此類患者應使用胸部CT篩查肺轉(zhuǎn)移。(參見上文‘局部復發(fā)的處理’)現(xiàn)有證據(jù)不足以支持手術治療原發(fā)性或復發(fā)性GCTB后使用地諾單抗,有待進一步信息?!駥τ讷@得理想手術切緣必定會引發(fā)不可接受的并發(fā)癥(例如,兩組骶神經(jīng)根都會犧牲的中線較大骶骨GCTB)的GCTB患者,或不適合手術治療的患者,可選擇地諾單抗或放療。(參見上文‘放療’和‘新輔助地諾單抗’)骶骨腫瘤患者也可選擇動脈栓塞,但公開的經(jīng)驗有限。(參見上文‘骶骨腫瘤’)●脊柱巨細胞瘤很難治療。應盡可能實現(xiàn)完全手術切除,特別是有明顯神經(jīng)系統(tǒng)受損時。但地諾單抗也有效,特別是對于無法切除的腫瘤和高風險部位的腫瘤;有時可達到長期控制。長期地諾單抗治療必須權衡利弊。因為患者各有各的難處,應個體化處理。(參見上文‘脊柱腫瘤’和‘新輔助地諾單抗’)●大多數(shù)肺轉(zhuǎn)移患者的結(jié)局良好,不會因病死亡。不過,我們建議大多數(shù)患者接受手術治療,而非觀察(Grade 2B)。若選擇觀察,則需密切監(jiān)測,以便早期檢出腫瘤進展。(參見上文‘肺轉(zhuǎn)移’)●核因子-κB受體活化因子/核因子-κB受體活化因子配體配體(RANK/RANKL)軸在介導破骨細胞樣細胞的募集和功能中發(fā)揮作用,這為采用該路徑靶向治療(如地諾單抗)提供了重要依據(jù)。鑒于目前有效性和安全性證據(jù)的份量,對于存在持續(xù)性不可切除或轉(zhuǎn)移性疾病的患者,我們建議也可使用地諾單抗替代其他形式的全身治療(Grade 2B)。但地諾單抗治療GCTB的長期影響尚不完全清楚,可能包括嚴重并發(fā)癥,如頜骨骨質(zhì)壞死。(參見上文‘RANKL抑制劑:地諾單抗’)其他全身治療(包括雙膦酸鹽、化療以及干擾素)的作用尚不完全清楚,因為大部分研究都早于地諾單抗療效確認試驗。(參見上文‘雙膦酸鹽’和‘化療和干擾素’和‘皮質(zhì)類固醇’)●我們通常在治療后3個月使用低劑量CT檢查原發(fā)部位,然后每6個月1次,持續(xù)2-3年,之后每年1次。患者隨訪至少5年,因為局部復發(fā)可能發(fā)生得很晚。但治療后最佳監(jiān)測頻率尚無共識,個體患者的術后影像學檢查頻率需要依靠臨床判斷。(參見上文‘治療后監(jiān)測’)參考文獻Cooper AS, Travers B. Surgical Essays, Cox, Longman & Co, London 1818.Jaffe HL, Portis RB. Giant Cell Tumor of Bone. Its Pathologic Appearance, Grading, Supposed Variants, and Treatment. Arch Pathology 1940; 30:993.Larsson SE, Lorentzon R, Boquist L. Giant-cell tumor of bone. A demographic, clinical, and histopathological study of all cases recorded in the Swedish Cancer Registry for the years 1958 through 1968. J Bone Joint Surg Am 1975; 57:167.Baena-Ocampo Ldel C, Ramirez-Perez E, Linares-Gonzalez LM, Delgado-Chavez R. Epidemiology of bone tumors in Mexico City: retrospective clinicopathologic study of 566 patients at a referral institution. Ann Diagn Pathol 2009; 13:16.Rockberg J, Bach BA, Amelio J, et al. Incidence Trends in the Diagnosis of Giant Cell Tumor of Bone in Sweden Since 1958. J Bone Joint Surg Am 2015; 97:1756.Guo W, Xu W, Huvos AG, et al. Comparative frequency of bone sarcomas among different racial groups. Chin Med J (Engl) 1999; 112:1101.Sung HW, Kuo DP, Shu WP, et al. Giant-cell tumor of bone: analysis of two hundred and eight cases in Chinese patients. J Bone Joint Surg Am 1982; 64:755.Amelio JM, Rockberg J, Hernandez RK, et al. Population-based study of giant cell tumor of bone in Sweden (1983-2011). Cancer Epidemiol 2016; 42:82.Werner M. Giant cell tumour of bone: morphological, biological and histogenetical aspects. Int Orthop 2006; 30:484.Viswanathan S, Jambhekar NA. Metastatic giant cell tumor of bone: are there associated factors and best treatment modalities? Clin Orthop Relat Res 2010; 468:827.Charest-Morin R, Fisher CG, Varga PP, et al. En Bloc Resection Versus Intralesional Surgery in the Treatment of Giant Cell Tumor of the Spine. Spine (Phila Pa 1976) 2017; 42:1383.Hoch B, Inwards C, Sundaram M, Rosenberg AE. Multicentric giant cell tumor of bone. Clinicopathologic analysis of thirty cases. J Bone Joint Surg Am 2006; 88:1998.Balke M, Schremper L, Gebert C, et al. Giant cell tumor of bone: treatment and outcome of 214 cases. J Cancer Res Clin Oncol 2008; 134:969.Puri A, Agarwal MG, Shah M, et al. Giant cell tumor of bone in children and adolescents. J Pediatr Orthop 2007; 27:635.Chrcanovic BR, Gomes CC, Gomez RS. Central giant cell lesion of the jaws: An updated analysis of 2270 cases reported in the literature. J Oral Pathol Med 2018; 47:731.Rendina D, Mossetti G, Soscia E, et al. Giant cell tumor and Paget's disease of bone in one family: geographic clustering. Clin Orthop Relat Res 2004; :218.Kim GS, Kim SH, Cho JK, et al. Paget bone disease involving young adults in 3 generations of a Korean family. Medicine (Baltimore) 1997; 76:157.Cohen MM Jr, Gorlin RJ. Noonan-like/multiple giant cell lesion syndrome. Am J Med Genet 1991; 40:159.Sinnott BP, Patel M. Giant cell lesion of the jaw as a presenting feature of Noonan syndrome. BMJ Case Rep 2018; 2018.van den Berg H, Schreuder WH, Jongmans M, et al. Multiple giant cell lesions in a patient with Noonan syndrome with multiple lentigines. Eur J Med Genet 2016; 59:425.Karbach J, Coerdt W, Wagner W, Bartsch O. Case report: Noonan syndrome with multiple giant cell lesions and review of the literature. Am J Med Genet A 2012; 158A:2283.Campanacci M, Baldini N, Boriani S, Sudanese A. Giant-cell tumor of bone. J Bone Joint Surg Am 1987; 69:106.Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of musculoskeletal sarcoma. 1980. Clin Orthop Relat Res 2003; :4.Kivioja AH, Blomqvist C, Hietaniemi K, et al. Cement is recommended in intralesional surgery of giant cell tumors: a Scandinavian Sarcoma Group study of 294 patients followed for a median time of 5 years. Acta Orthop 2008; 79:86.Salunke AA, Chen Y, Chen X, et al. Does pathological fracture affect the rate of local recurrence in patients with a giant cell tumour of bone?: a meta-analysis. Bone Joint J 2015; 97-B:1566.Yang Y, Huang Z, Niu X, et al. Clinical characteristics and risk factors analysis of lung metastasis of benign giant cell tumor of bone. J Bone Oncol 2017; 7:23.Athanasou NA, Bansal M, Forsyth R, et al. Giant Cell Tumour of Bone. In: WHO Classification of Tumours of Soft Tissue and Bone, 4th ed, Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F (Eds), IARC, Geneva 2013. p.321.Murphey MD, Nomikos GC, Flemming DJ, et al. From the archives of AFIP. Imaging of giant cell tumor and giant cell reparative granuloma of bone: radiologic-pathologic correlation. Radiographics 2001; 21:1283.Kwon JW, Chung HW, Cho EY, et al. MRI findings of giant cell tumors of the spine. AJR Am J Roentgenol 2007; 189:246.McKinney AM, Reichert P, Short J, et al. Metachronous, multicentric giant cell tumor of the sphenoid bone with histologic, CT, MR imaging, and positron-emission tomography/CT correlation. AJNR Am J Neuroradiol 2006; 27:2199.Aoki J, Watanabe H, Shinozaki T, et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 2001; 219:774.Strauss LG, Dimitrakopoulou-Strauss A, Koczan D, et al. 18F-FDG kinetics and gene expression in giant cell tumors. J Nucl Med 2004; 45:1528.Boriani S, Weinstein JN, Biagini R. Primary bone tumors of the spine. Terminology and surgical staging. Spine (Phila Pa 1976) 1997; 22:1036.Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop Relat Res 1980; 153:106.Hart RA, Boriani S, Biagini R, et al. A system for surgical staging and management of spine tumors. A clinical outcome study of giant cell tumors of the spine. Spine (Phila Pa 1976) 1997; 22:1773.Boriani S, Bandiera S, Casadei R, et al. Giant cell tumor of the mobile spine: a review of 49 cases. Spine (Phila Pa 1976) 2012; 37:E37.Chan P, Boriani S, Fourney DR, et al. An assessment of the reliability of the Enneking and Weinstein-Boriani-Biagini classifications for staging of primary spinal tumors by the Spine Oncology Study Group. Spine (Phila Pa 1976) 2009; 34:384.Donthineni R, Boriani L, Ofluoglu O, Bandiera S. Metastatic behaviour of giant cell tumour of the spine. Int Orthop 2009; 33:497.Dominkus M, Ruggieri P, Bertoni F, et al. Histologically verified lung metastases in benign giant cell tumours--14 cases from a single institution. Int Orthop 2006; 30:499.Leichtle CI, Leichtle UG, Grtner V, et al. Multiple skeletal metastases from a giant cell tumour of the distal fibula with fatal outcome. J Bone Joint Surg Br 2006; 88:396.Osaka S, Toriyama M, Taira K, et al. Analysis of giant cell tumor of bone with pulmonary metastases. Clin Orthop Relat Res 1997; :253.Rosario M, Kim HS, Yun JY, Han I. Surveillance for lung metastasis from giant cell tumor of bone. J Surg Oncol 2017; 116:907.Siebenrock KA, Unni KK, Rock MG. Giant-cell tumour of bone metastasising to the lungs. A long-term follow-up. J Bone Joint Surg Br 1998; 80:43.Chan CM, Adler Z, Reith JD, Gibbs CP Jr. Risk factors for pulmonary metastases from giant cell tumor of bone. J Bone Joint Surg Am 2015; 97:420.Domovitov SV, Healey JH. Primary malignant giant-cell tumor of bone has high survival rate. Ann Surg Oncol 2010; 17:694.Grote HJ, Braun M, Kalinski T, et al. Spontaneous malignant transformation of conventional giant cell tumor. Skeletal Radiol 2004; 33:169.Brien EW, Mirra JM, Kessler S, et al. Benign giant cell tumor of bone with osteosarcomatous transformation ("dedifferentiated" primary malignant GCT): report of two cases. Skeletal Radiol 1997; 26:246.Anract P, De Pinieux G, Cottias P, et al. Malignant giant-cell tumours of bone. Clinico-pathological types and prognosis: a review of 29 cases. Int Orthop 1998; 22:19.Ruka W, Rutkowski P, Morysiński T, et al. The megavoltage radiation therapy in treatment of patients with advanced or difficult giant cell tumors of bone. Int J Radiat Oncol Biol Phys 2010; 78:494.Athanasou NA, Bansal M, Forsyth R, et al. Giant cell tumour of bone. In: World health organization classification of tumours of soft tissue and bone, 4th, Fletcher CDM, Bridge JA,Hogendoorn PCW, Mertens F (Eds), IARC, Lyon 2013. p.321.Bertoni F, Bacchini P, Staals EL. Malignancy in giant cell tumor of bone. Cancer 2003; 97:2520.Rock MG, Sim FH, Unni KK, et al. Secondary malignant giant-cell tumor of bone. Clinicopathological assessment of nineteen patients. J Bone Joint Surg Am 1986; 68:1073.Sato K, Yamamura S, Iwata H, et al. Giant cell-rich osteosarcoma: a case report. Nagoya J Med Sci 1996; 59:151.Atkins GJ, Kostakis P, Vincent C, et al. RANK Expression as a cell surface marker of human osteoclast precursors in peripheral blood, bone marrow, and giant cell tumors of bone. J Bone Miner Res 2006; 21:1339.Lau YS, Sabokbar A, Gibbons CL, et al. Phenotypic and molecular studies of giant-cell tumors of bone and soft tissue. Hum Pathol 2005; 36:945.Morgan T, Atkins GJ, Trivett MK, et al. Molecular profiling of giant cell tumor of bone and the osteoclastic localization of ligand for receptor activator of nuclear factor kappaB. Am J Pathol 2005; 167:117.Liao TS, Yurgelun MB, Chang SS, et al. Recruitment of osteoclast precursors by stromal cell derived factor-1 (SDF-1) in giant cell tumor of bone. J Orthop Res 2005; 23:203.Anazawa U, Hanaoka H, Shiraishi T, et al. Similarities between giant cell tumor of bone, giant cell tumor of tendon sheath, and pigmented villonodular synovitis concerning ultrastructural cytochemical features of multinucleated giant cells and mononuclear stromal cells. Ultrastruct Pathol 2006; 30:151.Salerno M, Avnet S, Alberghini M, et al. Histogenetic characterization of giant cell tumor of bone. Clin Orthop Relat Res 2008; 466:2081.Atkins GJ, Haynes DR, Graves SE, et al. Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. J Bone Miner Res 2000; 15:640.Ghert M, Simunovic N, Cowan RW, et al. Properties of the stromal cell in giant cell tumor of bone. Clin Orthop Relat Res 2007; 459:8.Presneau N, Baumhoer D, Behjati S, et al. Diagnostic value of H3F3A mutations in giant cell tumour of bone compared to osteoclast-rich mimics. J Pathol Clin Res 2015; 1:113.Gomes CC, Diniz MG, Amaral FR, et al. The highly prevalent H3F3A mutation in giant cell tumours of bone is not shared by sporadic central giant cell lesion of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 118:583.Lüke J, von Baer A, Schreiber J, et al. H3F3A mutation in giant cell tumour of the bone is detected by immunohistochemistry using a monoclonal antibody against the G34W mutated site of the histone H3.3 variant. Histopathology 2017; 71:125.Amary F, Berisha F, Ye H, et al. H3F3A (Histone 3.3) G34W Immunohistochemistry: A Reliable Marker Defining Benign and Malignant Giant Cell Tumor of Bone. Am J Surg Pathol 2017; 41:1059.Behjati S, Tarpey PS, Presneau N, et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 2013; 45:1479.Huang TS, Green AD, Beattie CW, Das Gupta TK. Monocyte-macrophage lineage of giant cell tumor of bone. Establishment of a multinucleated cell line. Cancer 1993; 71:1751.Schwartz HS, Jenkins RB, Dahl RJ, Dewald GW. Cytogenetic analyses on giant-cell tumors of bone. Clin Orthop Relat Res 1989; :250.Haque AU, Moatasim A. Giant cell tumor of bone: a neoplasm or a reactive condition? Int J Clin Exp Pathol 2008; 1:489.Smith LT, Mayerson J, Nowak NJ, et al. 20q11.1 amplification in giant-cell tumor of bone: Array CGH, FISH, and association with outcome. Genes Chromosomes Cancer 2006; 45:957.Moskovszky L, Dezs K, Athanasou N, et al. Centrosome abnormalities in giant cell tumour of bone: possible association with chromosomal instability. Mod Pathol 2010; 23:359.Schwartz HS, Juliao SF, Sciadini MF, et al. Telomerase activity and oncogenesis in giant cell tumor of bone. Cancer 1995; 75:1094.Papanastassiou I, Ioannou M, Papagelopoulos PJ, et al. P53 expression as a prognostic marker in giant cell tumor of bone: a pilot study. Orthopedics 2010; 33.Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13:2412.Kim N, Odgren PR, Kim DK, et al. Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci U S A 2000; 97:10905.Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89:309.Skubitz KM, Cheng EY, Clohisy DR, et al. Gene expression in giant-cell tumors. J Lab Clin Med 2004; 144:193.Huang L, Xu J, Wood DJ, Zheng MH. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone: possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol 2000; 156:761.Ahmed AA, Dunlap C. Immunohistochemical detection of the receptor activator of nuclear factor Kappa B ligand and c-fos in giant cell granuloma. J Oral Maxillofac Pathol 2016; 20:47.Lindeman JH, Hanemaaijer R, Mulder A, et al. Cathepsin K is the principal protease in giant cell tumor of bone. Am J Pathol 2004; 165:593.Mak IW, Seidlitz EP, Cowan RW, et al. Evidence for the role of matrix metalloproteinase-13 in bone resorption by giant cell tumor of bone. Hum Pathol 2010; 41:1320.Ng PK, Tsui SK, Lau CP, et al. CCAAT/enhancer binding protein beta is up-regulated in giant cell tumor of bone and regulates RANKL expression. J Cell Biochem 2010; 110:438.Hanna N, Parfait B, Talaat IM, et al. SOS1: a new player in the Noonan-like/multiple giant cell lesion syndrome. Clin Genet 2009; 75:568.Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 2002; 70:1555.Carapito R, Paul N, Untrau M, et al. A new mutation in the C-SH2 domain of PTPN11 causes Noonan syndrome with multiple giant cell lesions. J Hum Genet 2014; 59:57.Noh BJ, Park YK. Giant cell tumor of bone: updated molecular pathogenesis and tumor biology. Hum Pathol 2018; 81:1.Mankin HJ, Hornicek FJ. Treatment of giant cell tumors with allograft transplants: a 30-year study. Clin Orthop Relat Res 2005; 439:144.Wang HC, Chien SH, Lin GT. Management of grade III giant cell tumors of bones. J Surg Oncol 2005; 92:46.Lackman RD, Hosalkar HS, Ogilvie CM, et al. Intralesional curettage for grades II and III giant cell tumors of bone. Clin Orthop Relat Res 2005; 438:123.Klenke FM, Wenger DE, Inwards CY, et al. Giant cell tumor of bone: risk factors for recurrence. Clin Orthop Relat Res 2011; 469:591.Arbeitsgemeinschaft Knochentumoren, Becker WT, Dohle J, et al. Local recurrence of giant cell tumor of bone after intralesional treatment with and without adjuvant therapy. J Bone Joint Surg Am 2008; 90:1060.Khalil el SA, Younis A, Aziz SA, El Shahawy M. Surgical management for giant cell tumor of bones. J Egypt Natl Canc Inst 2004; 16:145.Klenke FM, Wenger DE, Inwards CY, et al. Recurrent giant cell tumor of long bones: analysis of surgical management. Clin Orthop Relat Res 2011; 469:1181.Oliveira VC, van der Heijden L, van der Geest IC, et al. Giant cell tumours of the small bones of the hands and feet: long-term results of 30 patients and a systematic literature review. Bone Joint J 2013; 95-B:838.Errani C, Ruggieri P, Asenzio MA, et al. Giant cell tumor of the extremity: A review of 349 cases from a single institution. Cancer Treat Rev 2010; 36:1.Turcotte RE, Wunder JS, Isler MH, et al. Giant cell tumor of long bone: a Canadian Sarcoma Group study. Clin Orthop Relat Res 2002; :248.Vult von Steyern F, Bauer HC, Trovik C, et al. Treatment of local recurrences of giant cell tumour in long bones after curettage and cementing. A Scandinavian Sarcoma Group study. J Bone Joint Surg Br 2006; 88:531.Prosser GH, Baloch KG, Tillman RM, et al. Does curettage without adjuvant therapy provide low recurrence rates in giant-cell tumors of bone? Clin Orthop Relat Res 2005; :211.Gitelis S, Mallin BA, Piasecki P, Turner F. Intralesional excision compared with en bloc resection for giant-cell tumors of bone. J Bone Joint Surg Am 1993; 75:1648.Labs K, Perka C, Schmidt RG. Treatment of stages 2 and 3 giant-cell tumor. Arch Orthop Trauma Surg 2001; 121:83.Ward WG Sr, Li G 3rd. Customized treatment algorithm for giant cell tumor of bone: report of a series. Clin Orthop Relat Res 2002; :259.Lackman RD, Crawford EA, King JJ, Ogilvie CM. Conservative treatment of Campanacci grade III proximal humerus giant cell tumors. Clin Orthop Relat Res 2009; 467:1355.Haskell A, Wodowoz O, Johnston JO. Metachronous multicentric giant cell tumor: a case report and literature review. Clin Orthop Relat Res 2003; :162.Zhen W, Yaotian H, Songjian L, et al. Giant-cell tumour of bone. The long-term results of treatment by curettage and bone graft. J Bone Joint Surg Br 2004; 86:212.Dürr HR, Maier M, Jansson V, et al. Phenol as an adjuvant for local control in the treatment of giant cell tumour of the bone. Eur J Surg Oncol 1999; 25:610.Trieb K, Bitzan P, Lang S, et al. Recurrence of curetted and bone-grafted giant-cell tumours with and without adjuvant phenol therapy. Eur J Surg Oncol 2001; 27:200.Muramatsu K, Ihara K, Taguchi T. Treatment of giant cell tumor of long bones: clinical outcome and reconstructive strategy for lower and upper limbs. Orthopedics 2009; 32:491.Malawer MM, Bickels J, Meller I, et al. Cryosurgery in the treatment of giant cell tumor. A long-term followup study. Clin Orthop Relat Res 1999; :176.Blackley HR, Wunder JS, Davis AM, et al. Treatment of giant-cell tumors of long bones with curettage and bone-grafting. J Bone Joint Surg Am 1999; 81:811.Feigenberg SJ, Marcus RB Jr, Zlotecki RA, et al. Whole-lung radiotherapy for giant cell tumors of bone with pulmonary metastases. Clin Orthop Relat Res 2002; :202.Algawahmed H, Turcotte R, Farrokhyar F, Ghert M. High-Speed Burring with and without the Use of Surgical Adjuvants in the Intralesional Management of Giant Cell Tumor of Bone: A Systematic Review and Meta-Analysis. Sarcoma 2010; 2010.Nelson DA, Barker ME, Hamlin BH. Thermal effects of acrylic cementation at bone tumour sites. Int J Hyperthermia 1997; 13:287.Leeson MC, Lippitt SB. Thermal aspects of the use of polymethylmethacrylate in large metaphyseal defects in bone. A clinical review and laboratory study. Clin Orthop Relat Res 1993; :239.Rutkowski P, Ferrari S, Grimer RJ, et al. Surgical downstaging in an open-label phase II trial of denosumab in patients with giant cell tumor of bone. Ann Surg Oncol 2015; 22:2860.Rutkowski P, Gaston L, Borkowska A, et al. Denosumab treatment of inoperable or locally advanced giant cell tumor of bone - Multicenter analysis outside clinical trial. Eur J Surg Oncol 2018; 44:1384.Thomas D, Henshaw R, Skubitz K, et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol 2010; 11:275.Ueda T, Morioka H, Nishida Y, et al. Objective tumor response to denosumab in patients with giant cell tumor of bone: a multicenter phase II trial. Ann Oncol 2015; 26:2149.Chawla S, Henshaw R, Seeger L, et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: interim analysis of an open-label, parallel-group, phase 2 study. Lancet Oncol 2013; 14:901.Errani C, Tsukamoto S, Mavrogenis AF. How safe and effective is denosumab for bone giant cell tumour? Int Orthop 2017; 41:2397.Traub F, Singh J, Dickson BC, et al. Efficacy of denosumab in joint preservation for patients with giant cell tumour of the bone. Eur J Cancer 2016; 59:1.Müller DA, Beltrami G, Scoccianti G, et al. Risks and benefits of combining denosumab and surgery in giant cell tumor of bone-a case series. World J Surg Oncol 2016; 14:281.Goldschlager T, Dea N, Boyd M, et al. Giant cell tumors of the spine: has denosumab changed the treatment paradigm? J Neurosurg Spine 2015; 22:526.Aponte-Tinao LA, Piuzzi NS, Roitman P, Farfalli GL. A High-grade Sarcoma Arising in a Patient With Recurrent Benign Giant Cell Tumor of the Proximal Tibia While Receiving Treatment With Denosumab. Clin Orthop Relat Res 2015; 473:3050.Broehm CJ, Garbrecht EL, Wood J, Bocklage T. Two Cases of Sarcoma Arising in Giant Cell Tumor of Bone Treated with Denosumab. Case Rep Med 2015; 2015:767198.Palmerini E, Chawla NS, Ferrari S, et al. Denosumab in advanced/unresectable giant-cell tumour of bone (GCTB): For how long? Eur J Cancer 2017; 76:118.http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm356528.htm (Accessed on June 18, 2013).Balke M, Ahrens H, Streitbuerger A, et al. Treatment options for recurrent giant cell tumors of bone. J Cancer Res Clin Oncol 2009; 135:149.Ghert MA, Rizzo M, Harrelson JM, Scully SP. Giant-cell tumor of the appendicular skeleton. Clin Orthop Relat Res 2002; :201.von Steyern FV, Kristiansson I, Jonsson K, et al. Giant-cell tumour of the knee: the condition of the cartilage after treatment by curettage and cementing. J Bone Joint Surg Br 2007; 89:361.Puri A, Ranganathan P, Gulia A, et al. Does a less intensive surveillance protocol affect the survival of patients after treatment of a sarcoma of the limb? updated results of the randomized TOSS study. Bone Joint J 2018; 100-B:262.Caudell JJ, Ballo MT, Zagars GK, et al. Radiotherapy in the management of giant cell tumor of bone. Int J Radiat Oncol Biol Phys 2003; 57:158.Chakravarti A, Spiro IJ, Hug EB, et al. Megavoltage radiation therapy for axial and inoperable giant-cell tumor of bone. J Bone Joint Surg Am 1999; 81:1566.Feigenberg SJ, Marcus Jr RB, Zlotecki RA, et al. Radiation therapy for giant cell tumors of bone. Clin Orthop Relat Res 2003; :207.Malone S, O'Sullivan B, Catton C, et al. Long-term follow-up of efficacy and safety of megavoltage radiotherapy in high-risk giant cell tumors of bone. Int J Radiat Oncol Biol Phys 1995; 33:689.Miszczyk L, Wydmański J, Spindel J. Efficacy of radiotherapy for giant cell tumor of bone: given either postoperatively or as sole treatment. Int J Radiat Oncol Biol Phys 2001; 49:1239.Hug EB, Muenter MW, Adams JA, et al. 3-D-conformal radiation therapy for pediatric giant cell tumors of the skull base. Strahlenther Onkol 2002; 178:239.Shi W, Indelicato DJ, Reith J, et al. Radiotherapy in the management of giant cell tumor of bone. Am J Clin Oncol 2013; 36:505.Junming M, Cheng Y, Dong C, et al. Giant cell tumor of the cervical spine: a series of 22 cases and outcomes. Spine (Phila Pa 1976) 2008; 33:280.Kanamori M, Ohmori K. Curettage and radiotherapy of giant cell tumour of the sacrum: a case report with a 10-year follow-up. J Orthop Surg (Hong Kong) 2005; 13:171.Luther N, Bilsky MH, Hrtl R. Giant cell tumor of the spine. Neurosurg Clin N Am 2008; 19:49.Huvos AG, Woodard HQ. Postradiation sarcomas of bone. Health Phys 1988; 55:631.Nair MK, Jyothirmayi R. Radiation therapy in the treatment of giant cell tumor of bone. Int J Radiat Oncol Biol Phys 1999; 43:1065.Bennett CJ Jr, Marcus RB Jr, Million RR, Enneking WF. Radiation therapy for giant cell tumor of bone. Int J Radiat Oncol Biol Phys 1993; 26:299.Schwartz LH, Okunieff PG, Rosenberg A, Suit HD. Radiation therapy in the treatment of difficult giant cell tumors. Int J Radiat Oncol Biol Phys 1989; 17:1085.Leggon RE, Zlotecki R, Reith J, Scarborough MT. Giant cell tumor of the pelvis and sacrum: 17 cases and analysis of the literature. Clin Orthop Relat Res 2004; :196.Roeder F, Timke C, Zwicker F, et al. Intensity modulated radiotherapy (IMRT) in benign giant cell tumors--a single institution case series and a short review of the literature. Radiat Oncol 2010; 5:18.Lin PP, Guzel VB, Moura MF, et al. Long-term follow-up of patients with giant cell tumor of the sacrum treated with selective arterial embolization. Cancer 2002; 95:1317.Lackman RD, Khoury LD, Esmail A, Donthineni-Rao R. The treatment of sacral giant-cell tumours by serial arterial embolisation. J Bone Joint Surg Br 2002; 84:873.Harrop JS, Schmidt MH, Boriani S, Shaffrey CI. Aggressive "benign" primary spine neoplasms: osteoblastoma, aneurysmal bone cyst, and giant cell tumor. Spine (Phila Pa 1976) 2009; 34:S39.Luksanapruksa P, Buchowski JM, Singhatanadgige W, Bumpass DB. Systematic Review and Meta-analysis of En Bloc Vertebrectomy Compared with Intralesional Resection for Giant Cell Tumors of the Mobile Spine. Global Spine J 2016; 6:798.Yonezawa N, Murakami H, Kato S, et al. Giant cell tumor of the thoracic spine completely removed by total spondylectomy after neoadjuvant denosumab therapy. Eur Spine J 2017; 26:236.Charest-Morin R, Boriani S, Fisher CG, et al. Benign Tumors of the Spine: Has New Chemotherapy and Interventional Radiology Changed the Treatment Paradigm? Spine (Phila Pa 1976) 2016; 41 Suppl 20:S178.Dubory A, Missenard G, Domont J, Court C. Interest of Denosumab for the Treatment of Giant-cells Tumors and Aneurysmal Bone Cysts of the Spine. About Nine Cases. Spine (Phila Pa 1976) 2016; 41:E654.Luksanapruksa P, Buchowski JM, Singhatanadgige W, et al. Management of spinal giant cell tumors. Spine J 2016; 16:259.Mattei TA, Ramos E, Rehman AA, et al. Sustained long-term complete regression of a giant cell tumor of the spine after treatment with denosumab. Spine J 2014; 14:e15.Lin P, Lin N, Teng W, et al. Recurrence of Giant Cell Tumor of the Spine after Resection: A Report of 10 Cases. Orthop Surg 2018; 10:107.Kay RM, Eckardt JJ, Seeger LL, et al. Pulmonary metastasis of benign giant cell tumor of bone. Six histologically confirmed cases, including one of spontaneous regression. Clin Orthop Relat Res 1994; :219.Sanjay BK, Kadhi SM. Giant cell tumour of bone with pulmonary metastases. A report of three cases. Int Orthop 1998; 22:200.Sanjay BK, Younge DA. Giant cell tumour of metacarpal with pulmonary and skeletal metastases. J Hand Surg Br 1996; 21:126.Tubbs WS, Brown LR, Beabout JW, et al. Benign giant-cell tumor of bone with pulmonary metastases: clinical findings and radiologic appearance of metastases in 13 cases. AJR Am J Roentgenol 1992; 158:331.Cheng JC, Johnston JO. Giant cell tumor of bone. Prognosis and treatment of pulmonary metastases. Clin Orthop Relat Res 1997; :205.Skubitz KM, Thomas DM, Chawla SP, et al. Response to treatment with denosumab in patients with giant cell tumor of bone (GCTB): FDG-PET results from two phase 2 trials (abstract). J Clin Oncol 32: 5s (suppl; abstr 10505). Abstract available online at http://meetinglibrary.asco.org/content/132763-144 (Accessed on July 07, 2014).Branstetter DG, Nelson SD, Manivel JC, et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res 2012; 18:4415.Wojcik J, Rosenberg AE, Bredella MA, et al. Denosumab-treated Giant Cell Tumor of Bone Exhibits Morphologic Overlap With Malignant Giant Cell Tumor of Bone. Am J Surg Pathol 2016; 40:72.Bredell M, Rordorf T, Kroiss S, et al. Denosumab as a Treatment Alternative for Central Giant Cell Granuloma: A Long-Term Retrospective Cohort Study. J Oral Maxillofac Surg 2018; 76:775.Qi WX, Tang LN, He AN, et al. Risk of osteonecrosis of the jaw in cancer patients receiving denosumab: a meta-analysis of seven randomized controlled trials. Int J Clin Oncol 2014; 19:403.Tsukamoto S, Righi A, Vanel D, et al. Development of high-grade osteosarcoma in a patient with recurrent giant cell tumor of the ischium while receiving treatment with denosumab. Jpn J Clin Oncol 2017; 47:1090.Park A, Cipriano CA, Hill K, et al. Malignant Transformation of a Giant Cell Tumor of Bone Treated with Denosumab: A Case Report. JBJS Case Connect 2016; 6:e78.Cheng YY, Huang L, Kumta SM, et al. Cytochemical and ultrastructural changes in the osteoclast-like giant cells of giant cell tumor of bone following bisphosphonate administration. Ultrastruct Pathol 2003; 27:385.Chang SS, Suratwala SJ, Jung KM, et al. Bisphosphonates may reduce recurrence in giant cell tumor by inducing apoptosis. Clin Orthop Relat Res 2004; :103.Tse LF, Wong KC, Kumta SM, et al. Bisphosphonates reduce local recurrence in extremity giant cell tumor of bone: a case-control study. Bone 2008; 42:68.Arpornchayanon O, Leerapun T. Effectiveness of intravenous bisphosphonate in treatment of giant cell tumor: a case report and review of the literature. J Med Assoc Thai 2008; 91:1609.Balke M, Campanacci L, Gebert C, et al. Bisphosphonate treatment of aggressive primary, recurrent and metastatic Giant Cell Tumour of Bone. BMC Cancer 2010; 10:462.Bertoni F, Present D, Enneking WF. Giant-cell tumor of bone with pulmonary metastases. J Bone Joint Surg Am 1985; 67:890.Faisham WI, Zulmi W, Halim AS, et al. Aggressive giant cell tumour of bone. Singapore Med J 2006; 47:679.Maloney WJ, Vaughan LM, Jones HH, et al. Benign metastasizing giant-cell tumor of bone. Report of three cases and review of the literature. Clin Orthop Relat Res 1989; :208.Stewart DJ, Belanger R, Benjamin RS. Prolonged disease-free survival following surgical debulking and high-dose cisplatin/doxorubicin in a patient with bulky metastases from giant cell tumor of bone refractory to "standard" chemotherapy. Am J Clin Oncol 1995; 18:144.Skubitz KM, Manivel JC. Giant cell tumor of the uterus: case report and response to chemotherapy. BMC Cancer 2007; 7:46.Kaiser U, Neumann K, Havemann K. Generalised giant-cell tumour of bone: successful treatment of pulmonary metastases with interferon alpha, a case report. J Cancer Res Clin Oncol 1993; 119:301.Kaban LB, Troulis MJ, Wilkinson MS, et al. Adjuvant antiangiogenic therapy for giant cell tumors of the jaws. J Oral Maxillofac Surg 2007; 65:2018.De Chiara A, Apice G, Fazioli F, et al. Multicentric giant cell tumor with viral-like inclusions associated with Paget's disease of bone: a case treated by steroid therapy. Oncol Rep 1998; 5:317.Ziambaras K, Totty WA, Teitelbaum SL, et al. Extraskeletal osteoclastomas responsive to dexamethasone treatment in Paget bone disease. J Clin Endocrinol Metab 1997; 82:3826.Mohanty S, Jhamb A. Central giant cell lesion of mandible managed by intralesional triamcinolone injections. A report of two cases and literature review. Med Oral Patol Oral Cir Bucal 2009; 14:E98.2020年10月09日
10177
0
3
-
黃穩(wěn)定副主任醫(yī)師 復旦大學附屬腫瘤醫(yī)院 骨軟組織外科 上一篇文章我以問答的形式給朋友們介紹了骨巨細胞瘤的基本知識,接下來我給大家?guī)砑怪蔷藜毎黾八闹蔷藜毎龅脑\斷和治療方面的知識。脊柱骨巨細胞瘤不同于四肢,其臨床表現(xiàn)通常比較隱匿,影像學不典型,這在一定程度上造成了其診斷較為困難。而且,目前尚無針對骨巨細胞瘤的特異性生物學標記物,實驗室檢查對診斷無特殊幫助。因此,脊柱骨巨細胞瘤的診斷有必要嚴格遵循“三結(jié)合原則”,即臨床表現(xiàn)、影像學檢查及病理檢查相結(jié)合。臨床表現(xiàn)① 疼痛:是脊柱骨巨細胞瘤最常見的臨床表現(xiàn),通常是最初癥狀,甚至是就診時的唯一癥狀。主要是由于腫瘤侵犯局部組織而引起,但早期疼痛往往不典型。② 神經(jīng)功能障礙:是除疼痛之外最常見的臨床癥狀,主要由腫瘤壓迫脊髓或神經(jīng)根而引起,其嚴重程度與脊髓和神經(jīng)根受壓的程度相關。由于骨巨細胞瘤呈偏心性生長,因此癥狀通常偏向一側(cè)肢體。③ 脊柱畸形:可由椎體病理性骨折引起,也可由腫瘤造成的疼痛刺激而出現(xiàn)脊柱側(cè)彎。影像學診斷X線檢查:由于脊柱結(jié)構(gòu)復雜,X線表現(xiàn)往往比較隱蔽、不典型??娠@示膨脹性、溶骨性破壞,肥皂泡樣改變不明顯,周圍沒有硬化帶及骨膜反應。CT檢查:可清晰顯示腫瘤的侵犯范圍,可顯示椎體及附件呈溶骨性、膨脹性、偏心性改變,多數(shù)有椎旁軟組織腫塊形成。骨破壞區(qū)內(nèi)可有粗細不一、數(shù)量不等的骨嵴,形成多房性的所謂“肥皂泡”樣外觀,也可呈均一性圓形或卵圓形溶骨腔。腫瘤大多無硬化性邊緣和骨膜反應,有時腫瘤內(nèi)含有囊腔。MR檢查:有助于明確腫瘤與椎管內(nèi)及椎旁軟組織結(jié)構(gòu)的關系,腫瘤在T1加權像上呈低信號,在T2加權像上多呈等、低信號或混雜高信號,增強掃描后明顯強化;合并動脈瘤樣骨囊腫者表現(xiàn)為多囊狀高信號,可見液-液平面。核素骨掃描或PET/CT檢查:主要用于明確全身骨骼受累情況,尤其是對多中心骨巨細胞瘤的診斷有一定意義,但通常不作為常規(guī)和首選檢查。病理學診斷病理診斷是骨巨細胞瘤診斷的金標準。術前進行病理檢查,有助于明確病變的類型,對于制定治療方案和判斷患者預后均有重要的指導意義?;顧z主要有切開活檢或穿刺活檢,首選CT引導下穿刺活檢,由熟練的醫(yī)師完成。如穿刺活檢無法明確,則建議重新穿刺或切開活檢。2019年08月17日
2800
0
0
-
劉力劍副主任醫(yī)師 廊坊市人民醫(yī)院 磁共振室 骨巨細胞瘤(giant cell tumor of bone)起源于骨的非成骨性結(jié)締組織,腫瘤的主要成分為類似破骨細胞的巨細胞和圓形及梭形的基質(zhì)細胞。由于其主要成分與破骨細胞類似,故也稱為破骨細胞瘤(Osteoclastoma)。一、病理 Jaffe認為骨巨細胞瘤發(fā)生于骨髓內(nèi)的間質(zhì)細胞。大體解剖上,可見腫瘤占據(jù)了骨端的一部或大部,及相鄰骨干部腫瘤由軟而脆旦易出血的肉芽組織構(gòu)成,無纖維包膜。當腫瘤出血時,呈褐色或紅色。血腫機化后呈灰白色。腫瘤發(fā)生壞死則呈黑黃色。在出色和壞死區(qū)域內(nèi),可有囊變,囊內(nèi)含粘液或血液。腫瘤本身常被結(jié)締組織間隔分隔。鄰近的骨皮質(zhì)膨脹、變薄,形成不完整且菲薄的骨殼;腫瘤也可穿破骨殼而長入軟組織中,有時尚有包膜,有時則浸潤周圍組織。在腫瘤的四周常有一薄層反應新生骨。關節(jié)軟骨常不受侵犯。 顯微鏡下 骨巨細胞瘤主要由巨細胞及基質(zhì)細胞組成,巨細胞體積大,多核,核數(shù)平均20-30個,最多可達100個?;|(zhì)細胞呈圓形或梭形,除能融合成巨細胞外,并能向吞噬細胞,纖維細胞或成骨細胞分化,即具多能性。如典型巨細胞減少或消失,而基質(zhì)細胞排列混亂,緊密,數(shù)量增加,形狀大小不一,則考慮為惡性巨細胞瘤。 組織學上,一般將巨細胞瘤分為三級: Ⅰ級:即良性巨細胞瘤,所含巨細胞體積大,數(shù)目多,分布均勻,胞核數(shù)目一般在50上,偶見核分裂?;|(zhì)細胞以梭形為主,胞質(zhì)豐富,胞膜不膜大小不一,染色淺,分布較松散,不成束條或旋轉(zhuǎn)渦狀。 Ⅱ級:即有惡性傾向的巨細胞瘤,基質(zhì)細胞排列緊密,成束狀或旋渦狀。胞核大形狀不一,可見核分裂。巨細胞數(shù)目和體積減少,分布不均,胸核增大,數(shù)目稀少,染色深。 Ⅲ級:即惡性的巨細胞瘤,基質(zhì)細胞排列緊密紊亂,胞質(zhì)少,形狀不一。胞核增大,增多,染色深,核分裂多。巨細胞體積小,數(shù)目少,分布不均,胸核增大,數(shù)目稀少,染色深。 二、臨床 ⒈發(fā)病年齡 20-40歲的青壯年占發(fā)病總數(shù)的80%以上,20歲以下和40歲以上者少見,10歲以下的兒童更少見,男女發(fā)病率大致相等。 ⒉常見癥狀 ①腫瘤部位的疼痛及腫脹,疼痛有活動后加重,休息后減輕的特點,當骨質(zhì)破壞明顯時,疼痛變?yōu)槌掷m(xù)性。 ②腫瘤有潛襲性生長的特點,往往在長到很大以前未察到明顯的癥狀。 ③腫瘤長大后,可引起骨及關節(jié)的功能障礙。亦常出現(xiàn)肌肉萎縮。 ④晚期病例觸診時有“劈啪”的響聲或按乒乓球感覺,甚至感到搏動。 ⑤有的患者直到病理骨折后,始發(fā)現(xiàn)患病。 三、X線表現(xiàn) 骨巨細胞瘤多發(fā)生在骨骺融合后的成熟骨的骨端。 ①早期:常于長管狀骨骨端部見到偏心性骨質(zhì)破壞區(qū),呈圓形或橢圓形。腫瘤與周圍缺乏銳利的邊界而顯模糊,腫瘤周圍無浸潤,其鄰近皮質(zhì)可因膨脹而變薄,但不伴骨膜反應。此時,在中心部,還不一定即能顯示骨性間隔。 ②由于腫瘤增大,向周圍擴張,其向骨端部擴張的速度較向骨干部尤為顯著,腫瘤可以一直擴展到關節(jié)下方,其橫向和縱向擴張的程度是相仿的,有時橫向甚至超過縱向,這種橫向明顯擴張的現(xiàn)象在其他骨腫瘤是不易見到的。 ③此瘤不侵犯關節(jié),骨端中心區(qū)的病變達到關節(jié)軟骨下方就停止進展,而骨端的邊緣部病變?nèi)岳^續(xù)發(fā)展,因而相對將關節(jié)陰影陷入于腫瘤陰影之內(nèi),同樣地,在腫瘤與骨干部分,也可因腫瘤迅速增大擴張,而將骨干一部分埋于腫瘤陰影內(nèi)。 ④在腫瘤中心部顯出泡沫透亮區(qū)為巨細胞瘤的典型表現(xiàn),泡沫狀陰影的形成,是腫瘤周圍殘存斷裂的骨皮質(zhì)或皮質(zhì)內(nèi)形成的骨嵴及骨性間隔的重疊投影。 ⑤極少數(shù)病例,巨細胞瘤病變可超過關節(jié)累及鄰近骨骼,例如股骨上端病變超過髕關節(jié)累及同側(cè)髂骨,又如脊椎巨細胞瘤可超過椎間盤累及鄰近椎體。 ⑥腫瘤迅速增大,附近骨近骨皮質(zhì)出現(xiàn)蟲蛀狀破壞,鈣化的瘤體或骨化部分又被吸收破壞等現(xiàn)象,皆為惡性或惡變指征。 四、鑒別診斷 ㈠骨囊腫 好發(fā)于兒童及青年,病變多位于肱骨干骺端,漸次向骨退縮,其向周圍膨脹不如巨大細胞明顯,多房性骨囊腫內(nèi)可有殘存的條狀骨小梁,但不易看到典型泡沫狀影象。 ㈡良性成軟骨細胞瘤 患者年齡一般在30歲以下,好發(fā)于四肢長骨骺,X線表現(xiàn)為腫瘤透亮區(qū)內(nèi)有絮狀或砂粒樣鈣化點,與骨巨細胞瘤不同。 ㈢甲狀旁腺功能亢進癥 病變多發(fā)局部骨膨脹較少,可發(fā)生彎曲畸形,并具全身性骨質(zhì)疏松,皮質(zhì)變薄,骨膜下吸收等。實驗室檢查血鈣,磷酸酶增高,血磷減少。2011年02月26日
8210
0
0
骨巨細胞瘤相關科普號

曾輝醫(yī)生的科普號
曾輝 主任醫(yī)師
武漢市第六醫(yī)院
腫瘤科
2180粉絲791.8萬閱讀

劉鐵龍醫(yī)生的科普號
劉鐵龍 無職稱
海軍軍醫(yī)大學第二附屬醫(yī)院
骨科
2687粉絲27.6萬閱讀

范清醫(yī)生的科普號
范清 副主任醫(yī)師
上海交通大學醫(yī)學院附屬新華醫(yī)院
小兒骨科
2323粉絲3593閱讀